Statistical methods for gene set co-expression analysis
نویسندگان
چکیده
منابع مشابه
Statistical methods for gene set co-expression analysis
MOTIVATION The power of a microarray experiment derives from the identification of genes differentially regulated across biological conditions. To date, differential regulation is most often taken to mean differential expression, and a number of useful methods for identifying differentially expressed (DE) genes or gene sets are available. However, such methods are not able to identify many rele...
متن کاملGene set analysis methods: statistical models and methodological differences
Many methods of gene set analysis developed in recent years have been compared empirically in a number of comprehensive review articles. Although it is recognized that different methods tend to identify different gene sets as significant, no consensus has been worked out as to which method is preferable, as the recommendations are often contradictory. In this article, we want to group and compa...
متن کاملStatistical Analysis Methods for the fMRI Data
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...
متن کاملStatistical methods for analysis of time course gene expression data.
Since many biological systems or regulatory networks are dynamic systems, gene expression levels measured over different time points during a given biological process can often provide more insights about the underlying system. These gene expression data measured over time are often called the time-course gene expression data. One unique feature of such data is the time dependency of the gene e...
متن کاملGene set analysis methods applied to chicken microarray expression data
BACKGROUND Gene set analysis is considered to be a way of improving our biological interpretation of the observed expression patterns. This paper describes different methods applied to analyse expression data from a chicken DNA microarray dataset. RESULTS Applying different gene set analyses to the chicken expression data led to different ranking of the Gene Ontology terms tested. A method fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2009
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btp502